
A Common Database Approach for OLTP and OLAP Using
an In-Memory Column Database

Hasso Plattner
Hasso Plattner Institute for IT Systems Engineering

University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

hasso.plattner@hpi.uni-potsdam.de

Categories and Subject Descriptors
H.2.0 [Information Systems]: DATABASE MANAGE-
MENT—General

General Terms
Design, Performance

1. INTRODUCTION
Relational database systems have been the backbone of

business applications for more than 20 years. We promised
to provide companies with a management information sys-
tem that covers the core applications, including financials,
sales, order fulfillment, manufacturing, as well as human re-
sources, which run from planning through business processes
to individually defined analytics. However, we fell short of
achieving this goal. The more complex business require-
ments became, the more we focused on the so-called trans-
actional processing part and designed the database struc-
tures accordingly. These systems are called OLTP (Online
Transactional Processing) system. Analytical and financial
planning applications were increasingly moved out to sep-
arate systems for more flexibility and better performance.
These systems are called OLAP (Online Analytical Process-
ing) systems. In reality, parts of the planning process were
even moved off to specialized applications mainly around
spreadsheets.

Both systems, OLTP and OLAP, are based on the rela-
tional theory but using different technical approaches [13].
For OLTP systems, tuples are arranged in rows which are
stored in blocks. The blocks reside on disk and are cached
in main memory in the database server. Sophisticated in-
dexing allows fast access to single tuples, however access
get increasingly slower as the number of requested tuples
increases. For OLAP systems, in contrast, data is often or-
ganized in star schemas, where a popular optimization is to
compress attributes (columns) with the help of dictionaries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$10.00.

After the conversion of attributes into integers, processing
becomes faster. More recently, the use of column store data-
bases for analytics has become quite popular. Dictionary
compression on the database level and reading only those
columns necessary to process a query speed up query pro-
cessing significantly in the column store case.

I always believed the introduction of so-called data ware-
houses was a compromise. The flexibility and speed we
gained had to be paid for with the additional management
of extracting, and loading data, as well as controlling the
redundancy. For many years, the discussion seemed to be
closed and enterprise data was split into OLTP and OLAP
[9]. OLTP is the necessary prerequisite for OLAP, however
only with OLAP companies are able to understand their
business and come to conclusions about how to steer and
change course. When planned data and actual data are
matched, business becomes transparent and decisions can be
made. While centralized warehouses also handle the integra-
tion of data from many sources, it is still desirable to have
OLTP and OLAP capabilities in one system which could
make both components more valuable to their users.

Over the last 20 years, Moore’s law enabled us to let the
enterprise system grow both in functionality and volume
[16]. When the processor clock speed hit the 3 GHz level
(2002) and further progress seemed to be distant, two devel-
opments helped out: unprecedented growth of main mem-
ory and massive parallelism through blade computing and
multi-core CPUs [14]. While main memory was always wel-
come for e.g. caching and a large number of CPUs could be
used for application servers, the database systems for OLTP
where not ideally suited for massive parallelism and stayed
on SMP (symmetric multi processing) servers. The reasons
were temporary locking of data storage segments for updates
and the potential of deadlocks while updating multiple ta-
bles in parallel transactions. This is the main reason why
for example R/3 from SAP ran all update transactions in a
single thread and relied heavily on row level locking and su-
per fast communication between parallel database processes
on SMP machines. Some of the shortcomings could be over-
come later by a better application design, but the separation
of OLTP and OLAP remained unchallenged.

Early tests at SAP and HPI with in-memory databases of
the relational type based on row storage did not show sig-
nificant advantages over leading RDBMSs with equivalent
memory for caching. Here, the alternative idea to inves-
tigate the advantages of using column store databases for
OLTP was born. Column storage was successfully used for

many years in OLAP and really surged when main memory
became abundant [20, 5].

At the HPI, two and a half years ago, we started to analyze
whether it is feasible or not to perform OLTP operations on
an in-memory column store database. Many bachelor, mas-
ter, and PhD projects focused on this topic. In the following
paragraphs I would like to discuss our findings. Some sec-
tions are disputing common beliefs, others discussing options
for future developments.

2. COLUMN STORAGE IS BEST SUITED
FOR MODERN CPUS

Modern CPUs with multi-core architecture provide an
enormous amount of computing power. Blades with 8 CPUs
and 16 cores per CPU will populate next-generation blade
servers. That gives us 128 computing units with up to ap-
proximately 500 GB of main memory. To optimize the use of
these computing devices we have to understand memory hi-
erarchies, cache sizes, and how to enable parallel processing
within one program [6]. We consider the memory situation
first. Enterprise applications are to a large extent memory
bound, that means the program execution time is propor-
tional to the amount of memory accessed for read and write
operations or memory being moved.

As an example, we compare a full table scan of SAP’s
accounting document line items table, which has 160 at-
tributes, in order to calculate a total value over all tuples.
In an experiment we did with 5 years worth of accounting
of a German brewery, the number of tuples in this table was
34 million. In the underlying row database, 1 million tu-
ples of this particular table consume about 1 GB of space.
The size of the table was thus 35 GB. The equivalent col-
umn store table size was only 8 GB because of the more
efficient vertical compression along columns. If we consider
that in real world applications only 10% of the attributes
of a single table are typically used in one SQL-statement
(see Figure 1), that means for the column store at most 800
MB of data have to be accessed to calculate the total val-
ues [1]. Figure 2 shows (schematically) that the row store
with horizontal compression cannot compete, if processing
is set-oriented and requires column operations. Even with
the appropriate index the amount of data accessed is orders
of magnitude higher.

c1 c2 c3 c4 c5 c6
r1
r2
r3
r4
r5
r6
r7

SELECT c1, c4, c6 FROM table WHERE c4 < ?

Figure 1: Example Query and Schema

According to our analyses of real systems with customer
data, most applications in enterprise computing are actually
based on set processing and not single tuple access. Thus,
the benefit of having data arranged in a column store is

C1 C2 C3 C4

Column OperationsRow Operations

R4

R3

R2

R1

R4

R3

R2

R1

Co
lu

m
n

St
or

e
Ro

w
St

or
e

C5 C6 C1 C2 C3 C4 C5 C6

Figure 2: Data Access in Row- and Column Storage

substantial. In addition to this, we can execute most of
the calculations on row level using the compressed, integer
format. We see here a performance gain of a factor 100
- 1000 in comparison to the same calculation executed on
non-compressed data formats at the application level. The
application layer has to work with minimal projections in
local SQL statements and avoid using more generic SQL
statements in subroutines to support the reduction in mem-
ory access.

On top of these benefits comes the introduction of parallel
processing. According to Hennessy, the difficulty of creat-
ing parallel processing programs is to break up a program
into equal-sized pieces, which then can be processed in par-
allel without much synchronization [12]. The scan operation
through one or more columns is exactly what we are looking
for. This operation can indeed be split easily into equal parts
and distributed to multiple cores. The standard operations
of OLAP engines and any other formal application logic, e.g.
calculation of due dates, currency conversion, working days
for a given date interval etc., can be handled by stored pro-
cedures operating on the integer values of the compressed
columns.

All calculations on the tuple level will automatically be
parallelized, since they are completely independent of each
other. The first level of an aggregation will be executed
synchronously for each qualified tuple. The synchronization
between the core processes is minimal. Further aggregation
along given hierarchies takes place as a second step on the
accumulated data. The same applies to sorting by attributes
or sequencing by time.

Even if only a few tuples match the selection predicate,
the introduction of indices is not necessary because the scan-
ning speed is so enormous, especially if parallel processing
across multiple cores is active. On current CPUs, we can
expect to process 1 MB per ms and with parallel processing
on 16 cores more than 10MB per ms. To put this into con-
text, to look for a single dimension compressed in 4 bytes,
we can scan 2.5 million tuples for qualification in 1 ms. With
this speed in mind, we will not even provide a primary key
index for most of the tables anymore but use the full column
scan instead. Column storage is so well suited for modern

CPUs that the full scope of the relational algebra can be
used without shortcomings in performance. It is important
to note that every attribute now represents a potential in-
dex. There are no restrictions anymore for the applications
to select data only along on predefined navigation paths.
The delegation of most of the calculations to the database
layer cleans up the application layer and leads to a better
separation of concerns. This will result in a higher quality
of programs and allow a better lifecycle with ongoing devel-
opment. The hard disk is used only for transaction logging
and snapshots for fast recovery. In fact, disk has become
yesterday’s tape [11].

3. CLAIM:
COLUMN STORAGE IS SUITED FOR
UPDATE-INTENSIVE APPLICATIONS

Column store databases are said to be expensive to update
[8]. Having all data in main memory greatly improves the
update performance of column stores, but we still have to
consider the potential expansion of the attribute dictionar-
ies, which could lead to a situation where the compression
has to be recalculated and thus affects the entire column.
Therefore, we analyzed the updates in a financial system
(Figure 3) in more detail.

3.1 History of SAP’s Database Table Design
The large number of materialized views and materialized

aggregates might be astonishing at first glance. This re-
dundancy became necessary to achieve reasonable response
times for displaying the line items and account totals. The
higher number of inserts and the problematic update of re-
dundant data using database triggers or procedural code was
the price to pay. The customer-defined roll-ups into cubes in
the OLAP part of the system allowed a flexible reporting at
reasonable response times but added complexity and extra
system management overhead.

Accounting Document
Header

Accounting Document
Items

General Ledger

Accounts Payable

Accounts Receivable

Material Ledger

Sales Ledger

Tax Ledger

Fixed Asset

Cash Ledger

General Ledger Items

Accounts Payable
Items

Accounts Receivable
Items

Material Ledger Items

Sales Ledger Items

Tax Ledger Items

Fixed Asset Items

Cash Ledger Items

Dunning Payments

Indices

Reporting Cubes

Materialized Aggregates Materialized Views

Base Tables

Change HistoryChanges

Figure 3: Schema of Financial System (Status Quo)

3.2 Customer Data Analysis
In analyzing the change logs of 4 different SAP customers

we found that updates can be categorized into 3 major types:

• Aggregate update: The attributes are accumulated val-
ues as part of materialized views (between 1 and 5 for
each accounting line item)

• Status update: Binary change of a status variable, typ-
ically with timestamps

• Value update: The value of an attribute changes by
replacement

3.2.1 Aggregate Updates
Most of the updates taking place in financial applications

apply to total records following the structure of the coding
block. The coding block can contain e.g. account number,
legal organization, year, etc. These total records are basi-
cally materialized views on the journal entries in order to fa-
cilitate fast response times when aggregations are requested.
Since the roll-ups into multi-dimensional cubes became ob-
solete when data warehouses based on column storage were
introduced [18] (see for example SAP Business Warehouse
Explorer), we analyzed whether aggregates could be created
via algorithms and always on the fly. The more instances
of aggregates are requested, the better for the relative per-
formance of the column storage (Figure 4). The creation
of aggregates corresponds to a full column scan, therefore
the number of aggregates in the response set has only little
impact on the response time. In a row store, the response
time increases linearly with the number of aggregates read.

Time
in Log(x)

10 100 1000 10k 100k 1M

Building 100 Aggregates on the fly (memory / column store)
Building 10 Aggregates on the fly (memory / column store)
Building 1 Aggregates on the fly (memory / column store)
Reading pre-built aggregates (disk-based / row store)

Figure 4: Aggregation On the Fly vs. Read of Ma-
terialized Views

3.2.2 Status Updates
Status variables (e.g. unpaid, paid) typically use a pre-

defined set of values and thus create no problem when per-
forming an in-place update since the cardinality of the vari-
able does not change. It is advisable that compression of
sequences in the columns is not allowed for status fields. If
the automatic recording of status changes is preferable for
the application, we can also use the insert-only approach,
which will be discussed in section 3.2.3, for these changes.
In case the status variable has only 2 values, a null value
and a timestamp are the best option. An in-place update is
fully transparent even considering time-based queries.

3.2.3 Value Updates
Since the change of an attribute in an enterprise applica-

tion in most cases has to be recorded (log of changes), an
insert-only approach seems to be the appropriate answer.
Figure 5 shows that only 5% on average of the tuples of
a financial system are actually changed over a long period
of time. The extra load for the delta manager (the write-
optimized store in a column store database which handles

updates and inserts) and the extra consumption of main
memory are acceptable. We only insert into the delta stor-
age where the dictionaries are not sorted but maintained in
the order of insertion. With insert-only, we also capture the
change history including time and origin of the change.

0!%

4!%

8!%

11!%

15!%

Cust1 Cust2 Cust3 Cust4

Pe
rc

en
ta

ge
 o

f
ro

w
s

u
p
d
at

ed

Figure 5: Financial Accounting Update Frequencies

Despite the fact that typical enterprise systems are not re-
ally update-intensive, by using insert-only and by not main-
taining totals, we can even reduce these updates. Since
there are less updates, there are less locking issues and the
tables can be more easily distributed (partitioned) horizon-
tally across separate computing units (blades) with a shared
nothing approach [19]. Having basically eliminated the up-
dates we now need only consider the inserts and the reads.
How we distinguish between the latest representation of a
tuple and the older versions and maintain concurrency be-
tween read and update will be discussed in the next section.

With these recommended changes to the financial system,
the number of major tables will drop from more than 18 to
2 (not including change history, indices, and OLAP cubes),
as depicted in Figure 6. We only keep the accounting doc-
uments – header and line items – in tables. The insert-only
approach and calculation algorithms executed on the fly re-
place all indices, materialized views and change history.

Accounting Document
Header

Accounting Document
Items

Figure 6: Simplified Financials System (Target)

4. CONSEQUENCES OF THE INSERT-
ONLY APPROACH

The insert-only approach has consequences on how locking
is handled both on the application- and database level.

4.1 Application-Level Locks
Many business transactions deal with several relational

tables and multiple tuples of one table simultaneously. The
applications “think” in objects, a layer which is established
on top of the relational model. Despite we can handle most
concurrency situations with our exclusive database lock we
have to introduce a shared lock on object (application) level.
The application object customer, for example, translates

into up to 15 database tables. A change of a customer ob-
ject can include banking information, shipping address, etc.
It is mandatory for consistency to have only one transac-
tion changing this specific object at a time. Another exam-
ple is the reconciliation of open items in accounts payable
or receivable. Multiple open items will be marked as paid
in one transaction. The lock is not on the accounting line
items table but on the objects creditor or debitor. These
application-level locks are implemented using an in-memory
data structures.

4.2 Database Locks
With the insert-only approach the update of tuples by the

application could be eliminated with the exception of binary
status variables. Having multiple versions of the same tuple
in the database requires that the older ones be marked as no
longer valid. Each inserted tuple carries the timestamp of its
creation and in case it is being updated, the timestamp of the
update. Only the latest version of a tuple carries no update
timestamp and is therefore easily identifiable. The benefit
of this concept is any state of the tuple can be recreated
by using the two timestamps with regards to a base date
for the query. This approach has been adopted before in
POSTGRES [21] in 1987 and was called “time-travel”. The
extended SQL has to support a base date parameter through
which the valid version of a tuple can be identified.

To carry all older versions of a tuple in the same table has
significant application advantages especially in planning ap-
plications, where retrieving older versions of data is common
[7]. In addition to that it completely eliminates the neces-
sity of creating a separate log of the changes. The additional
storage capacity requirements can be ignored.

The timestamp attributes are not participating in any
compression algorithm and therefore do not lead to any re-
organization of the column when updated. Since multiple
queries can coincide with inserts and updates, extreme care
has to be taken to avoid too much locking on table-, column-
or dictionary level.

Now we look at inserts. Inserts are added to the delta
store at the appropriate partition of a table. The times-
tamp at the start of a query defines which tuples are valid
(only tuples with a lower timestamp). In case an insert is
in progress (single or multiple ones) the timestamp of the
start of a new query will be set to the timestamp of the in-
sert transaction minus one, and again the ongoing insert(s)
will be ignored. This procedure is equivalent to snapshot
isolation via timestamps [15, 3].

In the current research system we observed a significant
increase in time per insert, when multiple queries were con-
currently running. We believe this is an implementation
issue from the days when maximum compression for read
only applications was the design objective. Since the inserts
are realized as an append to the delta store no exclusive lock
should be necessary. If a transaction includes multiple in-
serts, the same logic as for the insert/update will apply. All
queries running in concurrency will see a consistent snapshot
via the timestamps comparison.

Future research will specifically focus on concurrency and
locking issues. As a general rule the data base system should
perform each task with maximum speed, even occupying all
resources (e.g. CPU cores) in order to reduce the potential
for collisions and increasing management overhead.

Like the original inserts, all following inserts of changed

tuples carry a globally unique user identifier. Together with
the timestamps this provides a complete change history.

Having the complete history of a tuple in the table allows
the application to develop presentations of the evolution of
facts over time. An example is the evolution of the sales
forecast per day over a quarter in correlation with external
events to better understand trends and improve the extrap-
olation (Figure 7). Despite the application induces a full ta-
ble scan for each incremental move of the slider (see dashed
line), the user experience is similar to using a scroll-bar in
Microsoft Word.

sum of revenue,
prognosis 80%

sum of revenue,
prognosis 20%

sum of revenue,
booked

Figure 7: Sales Pipeline Forecast Using Historical
Versions of the Data

5. COLUMN STORAGE IS SUPERIOR TO
ROW STORAGE WITH REGARDS TO
MEMORY CONSUMPTION

Under the assumption to build a combined system for
OLTP and OLAP data has to be organized for set process-
ing, fast inserts, maximum (read) concurrency and low im-
pact of reorganization. This imposes limits on the degree
of compression for both row and column storage. While it
is possible to achieve the same degree of compression in a
row store as in a column store (see for e.g. IBM’s Blink en-
gine [17]), a comparison of the two should be done assuming
that the requirements above (especially fast inserts) are met,
which excludes read-only row stores from the discussion.

In the column store, the compression via conversion of at-
tribute values and the complete elimination of columns with
null values only is very efficient but can be improved in this
research system by interpreting the values: all characters
blank, all characters zero, and decimal floating point zero
as null values. Applications think in default values and do
not handle null values properly. By translating the default
values automatically into null values on the way into the
database and back into default values on the way out.

Comparing the memory requirements of column and row
storage of a table, the difference in compression rate is ob-
vious. Various analyses of existing customer data show a
typical compression rate of 20 for column store and a com-
pression rate of 2 for (write-optimized) row storage on disk.
For further memory consumption estimates we use a factor

of 10 based on compression in favor of column storage. As
discussed in another chapter, column storage allows us to
eliminate all materialized views (aggregates) and calculate
them algorithmically on demand. The storage requirements
associated with these aggregates vary from application to
application. The multi-dimensional cubes typically used in
OLAP systems for materialized roll-ups grow with the car-
dinality of the individual dimensions. Therefore a factor 2
in favor of column storage based on the elimination of re-
dundant aggregates is a conservative estimate.

Horizontal partitioning of tables will be used based on
time and tenants. The option to partition into multiple di-
mensions is very helpful in order to use different qualities of
main memory and processor speed for specific dimensions.
Within the context of memory consumption the option to
split tables into current data and historic data per year is ex-
tremely interesting. The analysis of customer data showed
that typically 5-10 years of historic data (no changes al-
lowed) are kept in the operational database.

Historic data can be kept accessible but reside on a much
cheaper and slower storage medium (flash memory or disk).
The current data plus the last completed year should be
kept in DRAM memory on blades for the typical year over
year comparison in enterprise systems. For the separation by
time we use two time stamps, creation time and completion
time. The completion time is controlled by the application
logic e.g. an order is completely processed or an invoice paid.
The completion date determines the year in which data can
become historic, that means no further changes are possi-
ble. With regards to main memory requirements we can
take a factor 5 in favor of column storage into account. It
is only fair to mention a horizontal partitioning could also
be achieved in record storage. Should the remaining table
size for the current and last years partition still be substan-
tial, horizontal partitioning by the data base management
may occur. Ignoring memory requirements for indices and
dimension dictionaries, we can assume a 10x2x5 time reduc-
tion in storage capacity (from disk to main memory). Next
generation boards for blade servers will most certainly pro-
vide roughly 500 GB of main memory with a tendency of
further growth. Since arrays of 100 blades are already com-
mercially available, installations with up to 50 TB for OLTP
and OLAP could be converted to an in-memory only system
on DRAM. This covers the majority of e.g. SAP’s Business
Suite customers as far as storage capacity is concerned.

6. WHAT HAPPENS TO TYPICAL DATA-
ENTRY TRANSACTIONS?

Data entry transactions consist of three parts: user data
entry, data validation, and database update. Most of the
data validation remains unchanged. Only the fact that any
attribute of a table operates as an index can help to improve
the quality of validation, e.g. in checking for duplicates of
customer-, supplier-, parts-entries or incoming invoices. The
database update is reduced to a mere insert. No indices
(primary and secondary ones) need to be maintained and for
journal entries, such as customer orders, stock movements
etc., no update of aggregates takes place. As a result, the
throughput of transactional data entry will improve. The
delta manager handles the initial insert of new tuples.

The delta storage is again organized as a column storage.
Since data retrieval and inserts can influence each other, ex-

treme care has to be taken in the implementation to avoid
unnecessary locking. This is particularly true with inserts
in partitioned tables. In order to reduce the influence of in-
serts on dictionary tables and reduce the impact of merge
operation between delta storage and main storage a two tier
organization of the delta storage is a concept currently in-
vestigated. The focus of research and development shifts
consequently from maximum compression of data to high
speed inserts with minimum effect on other simultaneously
running queries.

7. THE IMPACT ON APPLICATION
DEVELOPMENT

Applications based on a relational database using column
storage should use the relational algebra and the extended
SQL-features to delegate as much of the logic to the data
base level and the stored procedures. In rewriting exist-
ing applications we expect to reduce the amount of code by
more than 30% (in more formal applications like financials
40-50%). Many parts can be completely restructured us-
ing the fully-indexed nature of column storage. In an ideal
situation the application sets only the parameters for an al-
gorithm which is completely defined by extended SQL (as a
stored procedure) and executed on database level. The ap-
plication then works on the result set to produce the output
(screen, e-mail, print, phone, etc.). As mentioned before,
the strict use of minimal projections is recommended. The
high performance of the data base makes caching of data on
the application level largely superfluous.

The option to partition tables in multiple dimensions (ten-
ant, time, primary key range, etc.) helps to achieve mini-
mum response times for even larger tables. Since columns
which have not yet been populated do not take any space
in storage, except a 100 bytes stub, the addition of new
columns to an existing table is simple.

To verify our findings a research team started to set up a
next generation accounting system for accounts receivable,
accounts payable, general ledger and cost accounting includ-
ing planning. The basis is SAP’s on demand system ByDe-
sign. All user interaction, configuration etc. remain identi-
cal to enable a complete parallel test.

The table for the journal entries has only one index, the
accounting document number (plus line item number). No
indices to connect the journal entries with the accounts (deb-
itor, creditor, G/L or cost center etc.) exist. The only at-
tributes updated in place are: creation-, invalidation- and
reconciliation timestamp. All other changes result in an in-
sert of the changed entry and the invalidation of the old
one.

There are no aggregates in form of materialized views;
they will instead be created via algorithms on the fly. The
data entry speed improves since only two tables (document
header, document line item alias journal entry) receive in-
serts. The simplicity of the transaction allows reconsidering
a forward recovery approach instead of backing out a failed
transaction.

Every presentation of accounting data can be defined as
a spreadsheet, identifying the account(s), their hierarchical
structuring (sets), the values to be calculated (aggregates).
After a translation into extended SQL, the statement can
be verified for correctness and assuming the SQL processor
works flawlessly no further testing is required. The appli-

cation can fully concentrate on user interaction and infor-
mation presentation. In a second phase a research project
including business experts will focus on the potential of a
fully indexed data base with close to zero response time.

Not only have redundant tables been eliminated, but also
their maintenance in form of update procedures or the ETL
process between the OLTP and OLAP parts of a system.

8. COLUMN STORAGE IN SAAS APPLICA-
TIONS

In SaaS (Software as a Service) applications several as-
pects of column storage are helpful. Columns which are
unused are only represented by a stub. The introduction of
a new attribute to a table means an update of the metadata
and the creation of a stub for the column [2]. The attributes
can from then on be used by the application. This is an
important feature for the ongoing development of the appli-
cation without any interruption for the user. The join with
external data, which after import into the host system is held
in column storage, is extremely efficient even for very large
tables (minimum main memory accessed). In both cases the
greatly improved response time will be appreciated.

Not only can the application now determine what base
date for a query should be chosen but the development of the
content (attributes) of individual tuples can be monitored
(e.g. lifecycle of a customer order, control of sensitive data
in human resources or accounts payable).

9. FUTURE RESEARCH
Our ongoing research efforts are concentrated on creat-

ing a benchmark for combined OLTP and OLAP systems,
which is derived from real customer systems and data [4],
multi-tenancy for in-memory column data bases as well as
optimizations around the delta merge process.

In future work we will investigate the following directions:

• Disaster recovery

• TCO (Total Cost of Ownership) comparison between
the current version of SAP’s on-demand accounting
system and a version based on column store, including
energy consumption.

• Extension of the model for unstructured data

• Life cycle based data management - Based on the se-
mantics of different applications it is possible to spec-
ify if a single record is ever modified again or remains
read-only and thus allows different strategies for com-
pression and partitioning.

• Vertical Partitioning - In enterprise applications sev-
eral chunks of a single relation tend to be grouped to-
gether by their access patterns. Using a vertical par-
titioning approach allows performance improvements
when reading the content of those groups.

10. CONCLUSION AND OUTLOOK
The experience gained during the last 2.5 years encourages

us to predict enterprise systems for even larger companies
(e.g. up to 100 million sales activities per year), where all
business transactions, queries, including unrestricted aggre-
gations and time-based sequences, can be answered in just a

couple of seconds (including the surprisingly costly presen-
tation layer). We expect that the impact on management of
companies will be huge, probably like the impact of Internet
search engines on all of us. Figure 8 shows a future man-
agement meeting with information finally at your fingertips
[10] without any restriction.

Figure 8: Management Meeting of the Future

11. REFERENCES
[1] D. J. Abadi, S. Madden, and M. Ferreira. Integrating

Compression and Execution in Column-Oriented
Database Systems. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, Chicago, Illinois, USA, June 27-29, 2006, pages
671–682. ACM, 2006.

[2] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and
J. Rittinger. Multi-Tenant Databases for Software as s
Service: Schema-Mapping Techniques. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008, pages 1195–1206. ACM,
2008.

[3] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P. E. O’Neil. A Critique of ANSI SQL
Isolation Levels. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, San Jose, California, May 22-25, 1995, pages
1–10. ACM Press, 1995.

[4] A. Bog, J. Krueger, and J. Schaffner. A Composite
Benchmark for Online Transaction Processing and
Operational Reporting. In IEEE Symposium on
Advanced Management of Information for Globalized
Enterprises, 2008.

[5] P. Boncz. Monet: A Next-Generation DBMS Kernel
for Query-Intensive Applications. 2002. PhD Thesis,
Universiteit van Amsterdam, Amsterdam, The
Netherlands.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten.
Database Architecture Optimized for the New
Bottleneck: Memory Access. In VLDB’99, Proceedings
of 25th International Conference on Very Large Data
Bases, September 7-10, 1999, Edinburgh, Scotland,
UK, pages 54–65. Morgan Kaufmann, 1999.

[7] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. SIGMOD
Record, 26(1):65–74, 1997.

[8] G. P. Copeland and S. Khoshafian. A Decomposition
Storage Model. In Proceedings of the 1985 ACM
SIGMOD International Conference on Management of
Data, Austin, Texas, May 28-31, 1985, pages 268–279.
ACM Press, 1985.

[9] C. D. French. “One Size Fits All” Database
Architectures Do Not Work for DDS. In Proceedings of
the 1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, May
22-25, 1995, pages 449–450. ACM Press, 1995.

[10] B. Gates. Information At Your Fingertips. Keynote
address, Fall/COMDEX, Las Vegas, Nevada,
November 1994.

[11] J. Gray. Tape is Dead. Disk is Tape. Flash is Disk,
RAM Locality is King. Storage Guru Gong Show,
Redmon, WA, 2006.

[12] J. L. Hennessy and D. A. Patterson. Computer
Architecture - A Quantitative Approach. Morgan
Kaufmann, fourth edition, 2007.

[13] W. H. Inmon. Building the Data Warehouse, 3rd
Edition. John Wiley & Sons, Inc., New York, NY,
USA, 2002.

[14] G. Koch. Discovering Multi-Core: Extending the
Benefits of Moore’s Law. Technology@Intel, (7), 2005.

[15] D. Majumdar. A Quick Survey of MultiVersion
Concurrency Algorithms, 2007.
http://simpledbm.googlecode.com/files/mvcc-survey-
1.0.pdf.

[16] G. E. Moore. Cramming More Components Onto
Integrated Circuits. Electronics, 38(8), 1965.

[17] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani,
D. Kossmann, I. Narang, and R. Sidle. Constant-Time
Query Processing. In Proceedings of the 24th
International Conference on Data Engineering, ICDE
2008, April 7-12, 2008, Cancún, México, pages 60–69.
IEEE, 2008.

[18] J. Schaffner, A. Bog, J. Krüger, and A. Zeier. A
Hybrid Row-Column OLTP Database Architecture for
Operational Reporting. In Proceedings of the Second
International Workshop on Business Intelligence for
the Real-Time Enterprise, BIRTE 2008, in
conjunction with VLDB’08, August 24, 2008,
Auckland, New Zealand, 2008.

[19] M. Stonebraker. The Case for Shared Nothing. IEEE
Database Engineering Bulletin, 9(1):4–9, 1986.

[20] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik. C-Store: A Column-oriented DBMS. In
Proceedings of the 31st International Conference on
Very Large Data Bases, Trondheim, Norway, August
30 - September 2, 2005, pages 553–564. ACM, 2005.

[21] M. Stonebraker, L. A. Rowe, and M. Hirohama. The
Implementation of Postgres. IEEE Transactions on
Knowledge and Data Engineering, 2(1):125–142, 1990.

